NAG C Library Function Document nag zstein (f08jxc)

1 Purpose

nag_zstein (f08jxc) computes the eigenvectors of a real symmetric tridiagonal matrix corresponding to specified eigenvalues, by inverse iteration, storing the eigenvectors in a *complex* array.

2 Specification

void nag_zstein (Nag_OrderType order, Integer n, const double d[], const double e[], Integer m, const double w[], const Integer iblock[], const Integer isplit[], Complex z[], Integer pdz, Integer ifailv[], NagError *fail)

3 Description

nag_zstein (f08jxc) computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, by inverse iteration (see Jessup and Ipsen (1992)). It is designed to be used in particular after the specified eigenvalues have been computed by nag_dstebz (f08jjc) with $\mathbf{order} = \mathbf{Nag_ByBlock}$, but may also be used when the eigenvalues have been computed by other f08 or f02 functions.

The eigenvectors of T are real, but are stored by this function in a **complex** array. If T has been formed by reduction of a full complex Hermitian matrix A to tridiagonal form, then eigenvectors of T may be transformed to (complex) eigenvectors of A, by a call to nag zunmtr (f08fuc) or nag zupmtr (f08guc).

nag dstebz (f08jjc) determines whether the matrix T splits into block diagonal form:

and passes details of the block structure to this function in the arrays **iblock** and **isplit**. This function can then take advantage of the block structure by performing inverse iteration on each block T_i separately, which is more efficient than using the whole matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Jessup E and Ipsen I C F (1992) Improving the accuracy of inverse iteration SIAM J. Sci. Statist. Comput. 13 550–572

5 Parameters

1: **order** – Nag_OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

 $Constraint: order = Nag_RowMajor or Nag_ColMajor.$

[NP3645/7] f08jxc.1

2: \mathbf{n} - Integer Input

On entry: n, the order of the matrix T.

Constraint: $\mathbf{n} \geq 0$.

3: $\mathbf{d}[dim]$ – const double

Input

Note: the dimension, dim, of the array **d** must be at least max $(1, \mathbf{n})$.

On entry: the diagonal elements of the tridiagonal matrix T.

4: $\mathbf{e}[dim]$ – const double

Input

Note: the dimension, dim, of the array **e** must be at least $max(1, \mathbf{n} - 1)$.

On entry: the off-diagonal elements of the tridiagonal matrix T.

5: \mathbf{m} - Integer Input

On entry: m, the number of eigenvectors to be returned.

Constraint: $0 \le \mathbf{m} \le \mathbf{n}$.

6: $\mathbf{w}[dim]$ – const double

Input

Note: the dimension, dim, of the array w must be at least max $(1, \mathbf{n})$.

On entry: the eigenvalues of the tridiagonal matrix T stored in $\mathbf{w}[0]$ to $\mathbf{w}[m]$, as returned by nag_dstebz (f08jjc) with $\mathbf{rank} = \mathbf{Nag_ByBlock}$. Eigenvalues associated with the first sub-matrix must be supplied first, in non-decreasing order; then those associated with the second sub-matrix, again in non-decreasing order; and so on.

Constraint: if iblock[i] = iblock[i+1], $w[i] \le w[i+1]$ for i = 0, 1, ..., m-2.

7: **iblock**[dim] – const Integer

Input

Note: the dimension, dim, of the array **iblock** must be at least $max(1, \mathbf{n})$.

On entry: the first m elements must contain the sub-matrix indices associated with the specified eigenvalues, as returned by nag_dstebz (f08jjc) with **order** = **Nag_ByBlock**. If the eigenvalues were not computed by nag_dstebz (f08jjc) with **order** = **Nag_ByBlock**, set **iblock**[i-1] to 1 for $i=1,2,\ldots,m$.

Constraint: $iblock[i] \le iblock[i+1]$ for i = 0, 1, ..., m-2.

8: isplit[dim] - const Integer

Input

Note: the dimension, dim, of the array **isplit** must be at least max $(1, \mathbf{n})$.

On entry: the points at which T breaks up into sub-matrices, as returned by nag_dstebz (f08jjc) with $\mathbf{rank} = \mathbf{Nag_ByBlock}$. If the eigenvalues were not computed by nag_dstebz (f08jjc) with $\mathbf{rank} = \mathbf{Nag_ByBlock}$, set $\mathbf{isplit}[0]$ to \mathbf{n} .

9: $\mathbf{z}[dim]$ – Complex

Output

Note: the dimension, dim, of the array \mathbf{z} must be at least $\max(1, \mathbf{pdz} \times \mathbf{m})$ when $\mathbf{order} = \mathbf{Nag_ColMajor}$ and at least $\max(1, \mathbf{pdz} \times \mathbf{n})$ when $\mathbf{order} = \mathbf{Nag_RowMajor}$.

If **order** = **Nag_ColMajor**, the (i, j)th element of the matrix Z is stored in $\mathbf{z}[(j-1) \times \mathbf{pdz} + i - 1]$ and if **order** = **Nag_RowMajor**, the (i, j)th element of the matrix Z is stored in $\mathbf{z}[(i-1) \times \mathbf{pdz} + j - 1]$.

On exit: the m eigenvectors, stored as columns of z; the ith column corresponds to the ith specified eigenvalue, unless **fail** > 0 (in which case see Section 6).

10: **pdz** – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array z.

f08jxc.2 [NP3645/7]

Constraints:

```
if order = Nag_ColMajor, pdz \geq \max(1, \mathbf{n}); if order = Nag_RowMajor, pdz \geq \max(1, \mathbf{m}).
```

11: **ifailv**[dim] – Integer

Output

Note: the dimension, dim, of the array **ifailv** must be at least max $(1, \mathbf{m})$.

On exit: if fail = i > 0, the first i elements of **ifailv** contain the indices of any eigenvectors which have failed to converge. The rest of the first m elements of **ifailv** are set to 0.

12: **fail** – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
On entry, \mathbf{pdz} = \langle value \rangle.
Constraint: \mathbf{pdz} > 0.
```

NE_INT_2

```
On entry, \mathbf{m} = \langle value \rangle, \mathbf{n} = \langle value \rangle.
Constraint: 0 \le \mathbf{m} \le \mathbf{n}.
On entry, \mathbf{pdz} = \langle value \rangle, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{pdz} \ge \max(1, \mathbf{n}).
On entry, \mathbf{pdz} = \langle value \rangle, \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{pdz} \ge \max(1, \mathbf{m}).
```

NE_INT_ARRAY

```
On entry, \mathbf{iblock}[i]\mathbf{w}[i]\mathbf{iblock}[i] = \langle value \rangle.
Constraint: if \mathbf{iblock}[i] = \mathbf{iblock}[i+1], \mathbf{w}[i] \leq \mathbf{w}[i+1] for i = 0, \dots, \mathbf{m} - 2.
On entry, \mathbf{iblock}[i]\mathbf{w}[i]\mathbf{iblock}[i] = \langle value \rangle.
Constraint: \mathbf{iblock}[i] \leq \mathbf{iblock}[i+1] for i = 0, \dots, \mathbf{m} - 2.
```

NE CONVERGENCE

 $\langle value \rangle$ eigenvectors (as indicated by argument **ifailv**) each failed to converge in 5 iterations. The current iterate after 5 iterations is stored in the corresponding column of **z**.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

[NP3645/7] f08jxc.3

7 Accuracy

Each computed eigenvector z_i is the exact eigenvector of a nearby matrix $A+E_i$, such that $\|E_i\|=O(\epsilon)\|A\|$, where ϵ is the *machine precision*. Hence the residual is small:

$$||Az_i - \lambda_i z_i|| = O(\epsilon)||A||.$$

However, a set of eigenvectors computed by this function may not be orthogonal to so high a degree of accuracy as those computed by nag_zsteqr (f08jsc).

8 Further Comments

The real analogue of this function is nag dstein (f08jkc).

9 Example

See Section 9 of the document for nag_zunmtr (f08fuc).

f08jxc.4 (last) [NP3645/7]